Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Roeland De Borger, Christophe M. L. Vande Velde and Frank Blockhuys*

Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium

Correspondence e-mail:
frank.blockhuys@ua.ac.be

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.052$
$w R$ factor $=0.184$
Data-to-parameter ratio $=10.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-1-(4-Methylphenyl)-2-(4-nitrophenyl)ethene

The title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}$, is a stilbene derivative with a push-pull conjugated system. The molecules form sheets with a head-to-tail arrangement both within and between the sheets.

Comment

The title compound, (I), was synthesized as a precursor for longer poly(p-phenylenevinylene) oligomers with non-linear optical properties (Cheng, Tam, Stevenson et al., 1991; Cheng, Tam, Marder et al., 1991), and for use in organic memories (Bandyopadhyay \& Pal, 2003). It was recently shown to be highly mutagenic (Ludolph et al., 2001).

(I)

Once corrected for libration effects, the differences in the intramolecular distances and angles are as expected for a room temperature measurement of an (E)-stilbene. For a discussion on the bond lengths and angles in and around the ethenylic bond, see Ogawa et al. (1992). The methyl-substituted ring B is slightly larger than the nitro-substituted ring A (Fig. 1), with the longest aromatic bonds involving C1 and C11, which are connected to the ethenylic link.

By itself, the molecule is a push-pull conjugated system and therefore it comes as no surprise that the compound crystallizes in the space group $P \overline{1}$, with the dipoles arranged head-totail within and between sheets, as is clearly demonstrated in Fig. 2. These stacks of alternating dipoles also give rise to π stacking interactions, given by $C g A \cdots C g B^{i}=3.920$ (3) \AA, 26.86° and perp $=3.497 \AA$, and $C g A \cdots C g B^{\mathrm{ii}}=3.898$ (3) \AA, 25.66° and perp $=3.514 \AA$, in which $C g$ is the centroid of the

Figure 1
View of (I), with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 12 January 2005 Accepted 23 February 2005 Online 4 March 2005

Figure 2
View of the packing of (I). H atoms have been omitted unless these are involved in hydrogen bonding. The π-stacking interactions are indicated by dashed lines and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dotted lines.
ring, the angle is relative to the normal of the plane of ring A, and the distance indicated by 'perp' is the perpendicular distance between $C g B$ and the least-squares plane of ring A [symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $2-x, 1-y$, $1-z$]. Only one intermolecular distance is shorter than the sum of the van der Waals radii, in this case by $0.18 \AA$, viz. H6 $\cdots \mathrm{O} 2^{\text {iii }}$ [symmetry code: (iii) $x, y-1, z$; Table 2]. The interaction links the molecules in infinite chains along the b axis, the direction in which no head-to-tail arrangement for the dipoles is possible due to the space-group symmetry. These two interactions are indicated in Fig. 2.

A TLS analysis with the program THMA14 (Schomaker \& Trueblood, 1998) indicates that the librational component $L 1$, which coincides with the long axis of the molecule within 2.6°, is an order of magnitude larger than the two other ones ($L 1=$ $39.27^{\circ 2}, L 2=4.33^{\circ 2}$ and $L 3=2.78^{\circ 2}$), while T and S are close to zero, as can be expected for a centrosymmetric structure.

Experimental

Compound (I) (Pfeiffer, 1915, 1916) was synthesized starting from triphenyl(p-xylyl)phosphonium chloride, (II), which was obtained by reacting α-chloro- p-xylene with triphenylphosphine in acetonitrile. Sodium $(2.3 \mathrm{~g}, 0.1 \mathrm{~mol})$ in dry ethanol $(80 \mathrm{ml})$ was added dropwise to a stirred mixture of (II) $(38.8 \mathrm{~g}, 0.1 \mathrm{~mol})$ and p-nitrobenzaldehyde $(15.1 \mathrm{~g}, 0.1 \mathrm{~mol})$ in dry ethanol. The mixture was refluxed under nitrogen for 3 h . After cooling to room temperature, water (150 ml) was added to the reaction mixture and the precipitate filtered off. The yellow product was collected and redissolved in hot acetone (250 ml). This solution was poured into water $(150 \mathrm{ml})$. The compound was then again collected by filtration. In order to obtain the E isomer, the compound was refluxed in toluene with a catalytic amount of iodine for 4 h . After cooling, prism-shaped crystals of (I) formed in the solution [yield 55%, m.p. (uncorrected) 422 K]. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}, \mathrm{TMS}): \delta 2.38(s, 3 \mathrm{H}, \mathrm{H} 24), 7.08(d, 1 \mathrm{H}, J=16.33 \mathrm{~Hz}, \mathrm{H} 7)$, $7.20(d, 2 \mathrm{H}, J=8.09 \mathrm{~Hz}, \mathrm{H} 13$ and H15), $7.24(d, 1 \mathrm{H}, J=16.33 \mathrm{~Hz}, \mathrm{H} 8)$, $7.44(d, 2 H, J=8.24 \mathrm{~Hz}, \mathrm{H} 12$ and H 16$), 7.61(d, 2 \mathrm{H}, J=8.85 \mathrm{~Hz}, \mathrm{H} 2$ and H6), $8.20\left(d, 2 \mathrm{H}, J=8.85 \mathrm{~Hz}, \mathrm{H} 3\right.$ and H5), ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}, \mathrm{TMS}): \delta 21.35$ (C24), 124.1 (C3-C5), 125.3 (C7), 126.7 (C2
and C6), 127.0 (C12 and C 16$), 129.6$ (C 13 and C 15), 133.3 (C8), 133.5 (C11), 139 (C14), 144.1 (C6), 146.7 (C4).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}$
$Z=2$
$M_{r}=239.26$
Triclinic, $P \overline{1}$
$a=7.339$ (1) £
$b=7.521$ (1) \AA
$c=12.230$ (4) A
$\alpha=98.66$ (2) ${ }^{\circ}$
$\beta=99.26(2)^{\circ}$
$\gamma=111.13(1)^{\circ}$
$V=605.3(2) \AA^{3}$
$D_{x}=1.313 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=6.1-17.6^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=291$ (1) K
Prism, yellow $0.26 \times 0.13 \times 0.13 \mathrm{~mm}$

Data collection

Enraf-Nonius MACH3
$\theta_{\text {max }}=25.3^{\circ}$
$h=0 \rightarrow 8$
$k=-9 \rightarrow 8$
$l=-14 \rightarrow 14$
3 standard reflections frequency: 60 min intensity decay: 2%
1055 $R_{\text {int }}=0.012$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0901 P)^{2}\right. \\
& \quad+0.1262 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.16 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.184$
$S=1.01$
2200 reflections
205 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 6$	$1.389(4)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.391(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.392(4)$	$\mathrm{C} 11-\mathrm{C} 8$	$1.465(4)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.471(4)$	$\mathrm{C} 16-\mathrm{C} 11$	$1.390(4)$
$\mathrm{C} 8-\mathrm{C} 7$	$1.312(4)$		
			$127.1(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$122.4(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 1$	$119.2(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$119.4(3)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 8$	$123.4(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 11$	$128.4(3)$	$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 8$	
			$179.4(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$0.4(5)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 8-\mathrm{C} 7$	

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2^{\mathrm{i}}$	$1.00(3)$	$2.54(3)$	$3.447(5)$	$151(2)$

Symmetry code: (i) $x, y-1, z$.

H atoms were located in difference density maps and refined freely $[\mathrm{C}-\mathrm{H}=0.94(3)-0.99(3) \AA]$. The methyl H atoms on C 24 were constrained to give angles of 109.5° and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$, with their distances free to refine, yielding $0.90 \AA$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: $D R E A R$ (Blessing, 1987); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick,

organic papers

1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and MERCURY (Bruno et al., 2002); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2003).

The authors thank Professor Dr R. Dommisse and J. Aerts for recording the NMR spectra. CVV thanks the FWO Vlaanderen for a grant as a research assistant.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bandyopadhyay, A. \& Pal, A. J. (2003). Appl. Phys. Lett. 82, 1215-1217.

Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Cheng, L.-T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G. \& Spangler, C. W. (1991). J. Phys. Chem. 95, 10643-10652.

Cheng, L.-T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. \& Marder, S. R. (1991). J. Phys. Chem. 95, 10631-10643.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ludolph, B., Klein, M., Erdinger, L. \& Boche, G. (2001). Mutat. Res. 491, 195210.

Ogawa, K., Sano, T., Yoshimura, S., Takeuchi, Y. \& Toriumi, K. (1992). J. Am. Chem. Soc. 114, 1041-1051.
Pfeiffer, P. (1915). Chem. Ber. 48, 1796-1809.
Pfeiffer, P. (1916). Chem. Ber. 49, 2433-2440.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Schomaker, V. \& Trueblood, K. (1998). Acta Cryst. B54, 507-514.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

